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ABSTRACT

A sliding window-based spectrum sensing method

determines the presence or absence of a primary user

by comparing the maximum of the received signal

energies from multiple sliding windows with a

threshold. In this letter, aiming to enhance this

scheme, we present a deep learning-based approach

for exploiting the pattern of the received signal

energies from sliding windows and investigate its

sensing performance.
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Ⅰ. Introduction

With the diversification and widespread adoption

of wireless communication services, the demand for

spectrum resource to support them has been ever

increasing. However, the amount of available spec-

trum resource is limited, and thus the concept of

cognitive radio or spectrum sharing[1] has emerged

as a promising means to address the problem of

spectrum scarcity. Some familiar examples of this

approach are the wireless local area network (LAN)

services in the 5GHz radar band and the Citizens

Broadband Radio Service (CBRS) in the 3.5GHz

band[1].

A popular form of spectrum sharing is to allow a

secondary user (SU) to access the frequency band of

interest when the band is found to be idle. Therefore

the function of spectrum sensing to check if the

band of interest is available to an SU is crucial in

cognitive radio. In the radar frequency band, the pri-

mary user (PU) is the radar system. An initial spec-

trum sensing approach for a pulse radar signal is to

detect the presence of a pulse radar signal by com-

paring the received signal power with some pre-

determined threshold[2]. Recently, a waveform-based

spectrum sensing method[3] has been published,

which detects the radar signal by modeling the PU

signal and applying the Generalized Likelihood

Ratio Test (GLRT).

Moreover, in order to exploit the sparsity of the

pulse radar signal in the time domain, a sliding win-

dow-based spectrum sensing scheme[4] has been re-

ported, which employs the maximum of the received

signal energies from multiple sliding windows as a

test statistic for spectrum sensing. In this letter, we

present an improved version of this approach which

employs the deep learning (DL) to utilize the dis-

tribution of the received signal energies from the

multiple sliding windows. Previously, machine learn-

ing (ML) or DL has been employed as alternatives

to traditional spectrum sensing methods like energy

detection or decision fusion in cooperative spectrum

sensing[1]. However, to the best of the authors’

knowledge, this is the first attempt to adopt DL for

the sliding window based spectrum sensing strategy.

Ⅱ. Proposed Sliding Window-Based 
Spectrum Sensing

We consider a typical situation of sliding win-

dow-based spectrum sensing[4] involving a pulse ra-

dar signal received by an SU and sliding windows

for spectrum sensing, as illustrated in Fig. 1. Here,

the sliding windows are assumed to be regularly

spaced in time, with their lengths being identical and

fixed. Additionally, consecutive sliding windows

may partially overlap in the time domain. For the

※ This work was supported by a Research Grant of Pukyong National University(2023)
w First and Corresponding Author : Pukyong National University, Division of Electronics and Communications Eng.,

chlim@pknu.ac.kr, 종신회원
* The University of Suwon, School of Electrical and Electronic Eng., jykim@suwon.ac.kr, 종신회원
논문번호：202406-111-B-LU, Received May 31, 2024; Revised June 18, 2024; Accepted June 18, 2024

mailto:chlim@pknu.ac.kr


논문 / Sliding Window-Based Spectrum Sensing with Deep Learning for Pulse Radar Signals

1237

convenience of presentation, we call the sliding win-

dow-based spectrum sensing scheme as a reference

scheme.

The reference spectrum sensing scheme calculates

the received signal energies for multiple sliding

windows. Let r(n) denote the received signal at the

n-th time instance within an observation window,

and M sliding windows of length L are supposed to

be included in an observation window. Then, the re-

ceived signal energy Em corresponding to the m-th

sliding window is defined as

(1)

However, the reference spectrum sensing scheme

does not exploit the inherent characteristic of a se-

quence of the received signal energies {Em, m = 1,

…, M}. For instance, when the radar pulse repetition

interval is 100 samples long, M = 40, and L = 5, Fig.

2 illustrates an instance of such a sequence of {Em,

m = 1, …, M} in an AWGN channel for two hypoth-

eses: one hypothesis H0 indicates that the PU is idle

and the other one H1 suggests that the PU is active.

As depicted in the figure, the sequence of the re-

ceived signal energies corresponding to H1 tends to

exhibit periodic peaks whereas the sequence for H0

does not reveal this characteristic, and the two se-

quences for H0 and H1 differ in their shapes. Thus,

we can expect that a detection strategy based on an

entire sequence of {Em, m = 1, …, M} could provide

better sensing performance than the reference spec-

trum sensing scheme which uses only the maximum

value of {Em, m = 1, …, M}.

In this paper, we propose a DL-based spectrum

sensing method aimed at utilizing the distinguished

features of the energy sequence associated with two

hypotheses. We adopt a simple DL model as shown

in Table 1. An input sample, which is the received

energy sequence {Em, m = 1, …, M}, is fed into the

first fully connected layer consisting of K nodes, fol-

lowed by batch normalization and rectified linear

unit (ReLU) activation function. To mitigate the

possibility of overfitting, we use the dropout layer

with a 50% dropout ratio. Subsequent to the applica-

tion of the second layer with the same structure, the

output is conveyed to the last fully connected layer

with an output size of 2. This layer employs the

softmax activation function to convert the two out-

puts into probabilities, representing the likelihood of

hypotheses H0 and H1, respectively. By training the

DL model, we can determine its model parameters

to guarantee a given false alarm probability and to

minimize detection error probability which is called

the Neyman Pearson criterion.

Layers Note

Input input size = M

Dense layer 1
output size = K, batch normalization,
activation = ReLU, dropout = 50%

Dense layer 2
output size = K, batch normalization,
activation = ReLU, dropout = 50%

Dense layer 3 output size = 2, activation = softmax

Table 1. Deep learning model for the proposed scheme

Ⅲ. Simulation Results

For performance evaluation, a pulse radar signal

Fig. 1. A typical situation for sliding window-based
spectrum sensing

Fig. 2. An example of sliding window energy sequences
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with a pulse width of 2 μs and a pulse repetition pe-

riod of 0.1 ms was considered, assumed to be re-

ceived through the Rayleigh fading channel. The

length of the observation window was set to 0.2 ms,

and the sampling rate was set to 1 MHz. Detection

thresholds were experimentally determined for the

three cases of target false alarm probabilities of

0.01, 0.05, and 0.1, which were considered since the

high false alarm rate is not of interest in the context

of spectrum sensing. The uncertainty of background

noise power was set to 0 dB and 2 dB. We assumed

that the sliding window is 5 μs long and there is no

overlap in time between the consecutive sliding

windows. Under these simulation conditions, the in-

put size M for the sensing schemes becomes 40. For

the DL model, we chose K = 30 nodes for each of

the first layer and second layer based on the ex-

perimental results that have been conducted. The

sizes of training data, validation data, and test data

for the DL model were 178,500 samples, 31,500

samples, and 10,000 samples, respectively. Here the

training data for H1 hypothesis were generated with

random SNR following a uniform distribution over

[-10, 0] dB.

Fig. 3 illustrates the performances of the refer-

ence scheme and the proposed scheme in terms of

detection probability versus false alarm probability

for an SNR of -10 dB. In the figure, “NPU” repre-

sents noise power uncertainty, “REF” refers to the

reference scheme and “DL” indicates the proposed

spectrum sensing scheme adopting deep learning.

Also, the actual false alarm rates differ slightly from

the target values of 0.01, 0.05, and 0.1 since these

values are obtained from computer simulations. As

expected, the DL scheme is shown to outperform the

reference scheme. Similarly, Fig. 4 presents the

spectrum sensing performances of the two schemes

for an SNR of 0 dB and illustrates that their per-

formances are improved relative to the case when

the SNR is -10 dB. Additionally, the DL scheme is

found to be more robust to the NPU than the refer-

ence scheme, as it exploits the pattern of the sliding

window energy sequence. In conclusion, the pro-

posed sliding window based sensing scheme demon-

strates superior performance relative to the reference

system. Furthermore, it can be easily generalized to

include other types of sensing methods such as fea-

ture detection rather than energy detection.

Fig. 4. Detection probability versus false alarm probability
for an SNR of 0dB
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